A negative-cycle algorithm for computing all the supported efficient solutions in multi-objective integer network flow problems

نویسندگان

  • Augusto Eusébio
  • José Rui Figueira
چکیده

This paper presents a new algorithm for identifying all the supported nondominated vectors (or outcomes) in the objective space, as well as the corresponding efficient solutions in the decision space, for the multi-objective integer network flow problem. Identifying the set of supported non-dominated vectors is of the utmost importance for obtaining a first approximation of the whole set of non-dominated vectors. This approximation is crucial, for example, in the two-phase methods that first compute the supported non-dominated vectors and then the unsupported non-dominated ones. Our approach is based on the negative-cycle algorithm used in single objective minimum cost flow problems, applied to a sequence of parametric problems. The proposed approach uses the connectedness property of the set of supported non-dominated vectors/efficient solutions to find all the integer solutions in the maximal nondominated/efficient facets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An L1-norm method for generating all of efficient solutions of multi-objective integer linear programming problem

This paper extends the proposed method by Jahanshahloo et al. (2004) (a method for generating all the efficient solutions of a 0–1 multi-objective linear programming problem, Asia-Pacific Journal of Operational Research). This paper considers the recession direction for a multi-objective integer linear programming (MOILP) problem and presents necessary and sufficient conditions to have unbounde...

متن کامل

Pareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm

Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...

متن کامل

A Tabu Search Method for a New Bi-Objective Open Shop Scheduling Problem by a Fuzzy Multi-Objective Decision Making Approach (RESEARCH NOTE)

This paper proposes a novel, bi-objective mixed-integer mathematical programming for an open shop scheduling problem (OSSP) that minimizes the mean tardiness and the mean completion time. To obtain the efficient (Pareto-optimal) solutions, a fuzzy multi-objective decision making (fuzzy MODM) approach is applied. By the use of this approach, the related auxiliary single objective formulation can...

متن کامل

Optimal Multi-Objective Placement of UPFC for Planning the Operation of Power Systems Using the Water Cycle Optimization Algorithm

Abstract: Unified Power Flow Controller (UPFC) is one of the FACTS devices which plays a crucial role in simultaneous regulating active and reactive power, improving system load, reducing congestion and cost of production. Therefore, determining the optimum location of such equipment in order to improve the performance of the network is significant. In this paper, WCA algorithm is used to locat...

متن کامل

Well-dispersed subsets of non-dominated solutions for MOMILP ‎problem

This paper uses the weighted L$_1-$norm to propose an algorithm for finding a well-dispersed subset of non-dominated solutions of multiple objective mixed integer linear programming problem. When all variables are integer it finds the whole set of efficient solutions. In each iteration of the proposed method only a mixed integer linear programming problem is solved and its optimal solutions gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008